SUBSTITUENT EFFECTS ON C-13 CHEMICAL SHIFT OF THE SIDE-CHAIN C $_{\alpha}$ -ATOM IN SUBSTITUTED BENZENES. THROUGH-SPACE INTERACTION IN META-SERIES AND HYBRIDIZATION EFFECT

Naoki INAMOTO,* Shozo MASUDA, Kazuo TORI,[†] and Yohko YOSHIMURA[†] Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan, and [†]Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

(Received in Japan 17 January 1977; received in UK for publication 26 January 1977)

We reported in previous papers that the ¹³C chemical shifts of <u>ipso-</u> and <u>meta-</u>carbon atoms $(C_i^{-} \text{ and } C_m^{-}SCS)$ in substituted benzenes are correlated with the electronegativity (χ_x) of the substituents $(X)^1$ and showed periodical character² whereas $C_p^{-}SCS$ is controlled by the Hammett σ_p^{-} . We now report on the basis of investigations of twenty-seven aromatic series that the ¹³C chemical shifts of α -carbon atoms $(C_\alpha^{-}SCS)$ in p-substituted benzenes are dominated by χ_x and to a small extent by resonance effect, and that in the m-series, through-space interaction between the C_α^{-} atom and both C_o^{-} and C_p^{-} atoms plays an important role in the transmission of substituent effects.

Since the C_{α} -SCS can be expected to be correlated with χ_{x} analogously to C_{i} - and C_{m} -SCS,^{1,2} the C_{α} -SCS values in p-substituted styrenes³ were plotted against χ_{x} . As shown in FIG. 1, the plots formed two separate lines of X substituents having lone-pair electrons (X) such as NH₂, OCH₃, and F,⁴ and those having no lone-pair electron (A) such as NO₂, CF₃, and COMe. The degree of separation between the two lines depended on the series of aromatics, suggesting a difference in the degree of contribution of extra resonance from the X groups.

Therefore, the C_{α} -SCS of the following p- and m-series was examined with various substituent constants, using reported and newly determined data.⁵

p-Series
$$(p-XC_{6}H_{4}Y)$$

sp³: Y = Me (1), ¹ Et (2), ⁵ CMe₃ (3), ⁶ (CH₂)₂R (R = Br, Me_{2}) (4), ⁷ CH₂F (5); ⁸
sp²: Y = CHO (6), ⁵ COMe (7), ⁵ CO₂H (8), ⁹ CO₂(CH₂)₂MHEt₂Cl (9), ¹⁰ CH=CH₂ (10), ³
CR=CH₂ (R = Me, CMe₃) (11), ¹¹ CH=NPh (12), ¹² CH=C(CN)₂ (13), ¹³
C₆H₅ (14), ¹⁴ Me (15), ¹⁵ CO₄R (R = H, Me) (16); ¹⁵
sp: Y = C=CH (17), ¹⁶ CN (18)¹, ¹⁷
m-Series (m-XC₆H₄Y)
sp³: Y = Me (19); ¹ sp²: Y = CHO (20), ⁵ COMe (21), ⁵ CO₂H (22), ⁹ CH=CH₂ (23); ¹⁸
sp : Y = CN (24)⁵, ¹⁷

p-Series.

Reports state that the C_{α} -SCS of 1, ¹ 4, ⁷ 6, ¹⁹ 7, ²⁰ and 10¹⁸ were not correlated with Hammett σ_p . We examined the correlation of C_{α} -SCS with Hammett σ_m , trying to understand better the mechanism of transmission involved, and obtained two lines due to Å and A groups analogous to those in C_m -SCS of substituted benzenes and biphenyls. ¹⁴

 $\underline{C_{\alpha}-sp}^3$. In the cases of 1-3, the slopes (ρ) of the two lines were both negative and had the same sign as that in the C_p-SCS (FIG. 2). The Ä-line was situated at higher fields, which indicates the contribution of extra resonance from the Ä groups. However, in the cases of 4 and 5, which possess an electronegative atom in the side chain, the line for the A groups had a positive slope and that for the Ä groups was at higher fields (FIG. 3), suggesting a lesser contribution of Å group resonance.

 $\underline{C_{\alpha}-sp}^2$ and -sp. In the cases of $\underline{9}-\underline{12}$ and $\underline{14}-\underline{16}$, the C_{α} -SCS was correlated well with σ_m . In the cases of $\underline{6}-\underline{8}$, $\underline{13}$, $\underline{17}$, and $\underline{18}$, the A-lines also had a positive slope, but the Ä-lines differed with the series: (i) a negative slope and higher fields ($\underline{6}$ and $\underline{13}$); (ii) a positive slope and higher fields ($\underline{8}$, $\underline{17}$, and $\underline{18}$) (see FIG. 4). Case (iii) indicates contribution of extra resonance. In fact, series $\underline{8}$, $\underline{17}$, and $\underline{18}$ were correlated fairly with σ_p , σ_p° , and σ_p of \overline{A} groups, respectively. In case (i), the C_{α} -SCS was correlated well with χ_{ψ} only (FIG. 5).

Summarizing our observations, we found with Å groups, that an electron-donating extra resonance contributes to the transmission in series 1-3, 8, 17, and 18, but scarcely in series 4, 6, 7, and 13. Of the A groups, the slopes were always positive except for series with alkyl side-chains (1-3), where the C_{α} -atoms are purely sp³-hybridized. In pure sp³- C_{α} atoms, the ρ value of C_{α} -SCS should be negative owing to dominating transmission through the σ -bond from the p-carbon, which possesses a negative ρ value. On the other hand, substitution of a hydrogen atom in the alkyl groups by an electronegative atom (4 and 5) increases the s-character as indicated by J_{C-H} values.²¹ When the s-character of the C_{α} -atom becomes larger than 1/4, the transmission mode is controlled by the π -inductive effect as those of the π -electron system ('Effect-4' of Katritzky and Topsom²²), which is transmitted alternatively;²³ then the ρ value becomes positive.

Therefore, the C_{α} -SCS in the p-series are governed largely by χ_{x} and to a small extent by resonance effect (σ_{R}) ,²⁴ depending on the electronegativity of the side chain (Y). Examples of these dual parameter equations are:

For 1, C_{α} -SCS = -0.32 (χ_{x} + 5.04 σ_{R}) + 0.82(r = 0.907, n = 12)For 8, C_{α} -SCS = +1.05 (χ_{x} + 1.16 σ_{R}^{+}) - 2.45(r = 0.957, n = 7)For 18, C_{α} -SCS = +1.67 (χ_{x} + 1.18 σ_{R}^{+}) - 3.94(r = 0.957, n = 11)

m-Series.

In all cases (19-24), the C_{α} -SCS was correlated well with σ_p , but not with σ_m (FIG. 6). The $\rho_{C_{\alpha}}$ values were always positive and opposite to those of the C_p atom (see the TABLE); this sign alternation can not be expected from the results with the p-series. The considerably large magnitude of the $\rho_{C_{\alpha}}$ values can hardly be explained merely by the transmission of the substituent effect from C_1 to C_{α} which must be weakened at C_m . Thus, we infer from the good correlation with Hammett σ_n that a through-space interaction between the C_{α} -atom and both

FIG. 4. C_{α} -SCS <u>vs</u>. σ_m for p-substituted benzaldehydes, acetophenones, and benzoic acids.

FIG. 5. C_{α} -SCS vs. χ_x for p-substituted benzylidene-malononitriles.

FIG. 6. C_{α} -SCS <u>vs</u>. σ_{p} and σ_{m} for m-substituted benzonitriles. o, σ_{p} ; •, σ_{m}

TABLE.	ρ	Values	for	°,	С _л -,	and	C _a -SCS	of	the	<u>meta</u> -Series
--------	---	--------	-----	----	-------------------	-----	---------------------	----	-----	---------------------

Compound	m-xc ₆ H ₄ CH ₃ (19) ¹			$m-XC_6H_4CHO(20)^5$			$m-XC_{6}H_{4}COMe$ (21) ⁵			$m-XC_{6}H_{4}CN$ (24) ^{5,7}		
Carbon p ^a	C _m (1) -1.77	C _p (6) -11.59	С _а 0.42	C _m (1) -1.32	C _P (6) -9.14	С _а 2.70	C _m (1) -0.81	C _p (6) -10.40	С _а 2.24	C _m (1) -2.51	C _p (6) -10.35	С _а 2.03
r ^b	0.517	0.951	0.808	0.567	0.908	0.926	0.530	0.945	0.977	0.970	0.941	0.945

^a Against Hammett σ_m for C_m^- , and σ_p for C_p^- and C_α^- SCS. ^b Correlation coefficients.

 C_o and C_p atoms is important. If this interaction is assumed to be π inductive-like, the sign of the ρ_{C} values becomes opposite to that of C_{p} - and C_{p} -SCS (FIG. 7). This kind of interaction is also seen in the through-space J_{R-F}^{25} and homo-hyperconjugation in ESR spectroscopy.²⁶

Recently, C_{α} -SCS has also been treated with the $\sigma_{I} - \sigma_{R}$ method for 3, 6 5, 8 9, 10 18, 17 and 24, 17 the FR method for 10³ and 11, 11 the Yukawa-Tsuno equation for 8 and 22, 9 and the modified Dewar equation for 14.14 The C_-SCS of o-substituted toluenes and benzaldehydes were

also formulated by a combination of σ_{I} , σ_{R}° , and the polarizability of a substituent.²⁷ Thus, we believe our analysis of C_{α} -SCS is a new idea.

REFERENCES

- 1. N. Inamoto, S. Masuda, K. Tokumaru, K. Tori, M. Yoshida and Y. Yoshimura, Tetrahedron Lett. 3707 (1976).
- Idem., Ibid. 3711 (1976). 2.
- 3. G. K. Hamer, I. R. Peat and W. F. Reynolds, Can. J. Chem. 51, 897 (1973).
- 4. Only the second period substituents were taken into account (cf. ref. 2).
- 5. Detailed data will be reported in a full paper. For the spectral measurement, see ref. 1.
- C. D. Schaeffer, Jr., J. J. Zuckerman and C. H. Yoder, J. Organometal. Chem. 80, 29 (1974). 6.
- L. F. Blackwell, P. D. Buckley and K. W. Jolley, Tetrahedron Lett. 4271 (1975). 7.
- J. Bromilow, R. T. C. Brownlee and A. V. Page, Ibid. 3055 (1976). 8.
- 9. a) J. Niwa and M. Yamazaki, Chem. Lett. 765 (1974); b) C. Nagata, H. Nagata and S. Tanaka, Nippon Kagaku Kaishi 2045 (1975).
- 10. O. A. Gansow, W. M. Beckenbaugh and R. L. Sass, Tetrahedron 28, 2691 (1972).
- G. K. Hamer, I. R. Peat and W. F. Reynolds, Can. J. Chem. 51, 915 (1973). 11.
- N. Inamoto, K. Kushida, S. Masuda, H. Ohta, S. Satoh, Y. Tamura, K. Tokumaru, K. Tori and 12. M. Yoshida, Tetrahedron Lett. 3617 (1974).
- 13.
- T. B. Posner and C. D. Hall, J. C. S. Perkin II 729 (1976). E. M. Schulman, K. A. Christensen, D. M. Grant and C. Walling, J. Org. Chem. 39, 2686 14. (1974).
- G. Dana, O. Convert, J.-P. Girault and E. Mulliez, Can. J. Chem. 54, 1827 (1976). 15.
- D. A. Dawson and W. F. Reynolds, <u>Ibid</u>. <u>53</u>, 373 (1975). 16.
- J. Bromilow and R. T. C. Brownlee, Tetrahedron Lett. 2113 (1975). 17.
- 18.
- K. S. Dhami and J. B. Stothers, <u>Can. J. Chem. 43, 510</u> (1965).
 a) J. B. Stothers and P. C. Lauterbur, <u>Ibid. 42</u>, 1563 (1964); b) A. Mathias, <u>Tetrahedron</u> 19.
- 22, 217 (1966). K. S. Dhami and J. B. Stothers, <u>Can. J. Chem. 43</u>, 479 (1965); <u>Tetrahedron Lett</u>. 631 20. (1964).
- 21. G. E. Maciel, J. W. McIver, Jr., N. S. Ostlund and J. A. Pople, J. Am. Chem. Soc. <u>92</u>, 1, 11 (1970).
- 22.
- A. R. Katritzky and R. D. Topsom, J. <u>Chem. Educ.</u> <u>48</u>, 427 (1971). O. Kajimoto and T. Fueno, <u>Tetrahedron Lett</u>. <u>3329</u> (1972). 23.
- O. Exner, "Advances in Linear Free Energy Relationships," ed. N. B. Chapman and J. Shorter, Chapter 1, Plenum Press, London (1972). 24.
- F. B. Mallory, C. W. Mallory and M.-C. Fedarko, J. Am. Chem. Soc. 96, 3536 (1974). 25.
- J. Cessac and N. L. Bauld, <u>Ibid</u>. <u>98</u>, 2712 (1976). 26.
- 27. C. H. Yoder, F. K. Sheffy, R. Howell, R. E. Hess, L. Pacala, C. D. Schaeffer, Jr. and J. J. Zuckerman, J. Org. Chem. 41, 1511 (1976).

FIG. 7